Akhirnyaditemukan jawaban untuk soal nomor 25 yaitu D. 2.656 m 2 ===== 27. Perhatikan gambar balok dibawah! titik koordinat yang dimulai dari angka -5 pada garis x adalah titik H dan titik G; angka yang ke dua tertulis (3) dibaca dari garis y ( garis tegak / garis vertikal), bila mengamati koordinat kartesius itu, titik koordinat yang
Jadi ruas garis terpendek dari contoh permasalahan di atas yakni ruas garis AB. Dengan begitu dapat kita simpulkan bahwa jarak titik A ke garis g adalah panjang ruas garis AB. Hal ini karena ruas garis AB yaitu ruas garis tegak lurus antara titik A ke garis g. Dalam hal ini, titik B dapat kita sebut sebagai proyeksi titik A terhadap garis g.
Padasuatu segitiga ABC diketahui bahwa titik-titik D dan E berturut-turut pada pertengahan sisi-sisi AC dan BC. Buktikanlah bahwa DE = 1 AB 2 dan DE // AB. Penyelesaian: Perhatikan Gambar 1.12. Kita misalkan CD = a dan CE = b, maka DE = b - a (ingat CD + DE = CE) dan CA = 2 CD = 2a, CB = 2 CE = 2 b. Gambar 1.12
MATEMATIKADASAR. Gunakan Petunjuk A dalam menjawab soal nomor 1 sampai nomor 17. 1. Sebuah segitiga sama kaki mempunyai alas 20 cm dan tinggi 15 cm. Jika dalam segitiga tersebut dibuat persegipanjang dengan alas terletak pada alas segitiga dan kedua titik sudut yang lain terletak pada kaki-kaki segitiga, maka luas maksimum persegi panjang tersebut sama dengan .
Diketahuiciri-ciri dua garis sebagai berikut (1) jarak antara kedua garis tersebut di semua bagian adalah sama (2) tidak pernah berpotongan di suatu ritik (3) perpotongan dua garis membentuk sudut 90 derajat (4) salah satu garis merupakan bagian dari garis lainnya Yang merupakan ciri-ciri dua garis sejajar ditunjukkan oleh nomor.. A. 1 dan 2
Soalnomor 8: Perhatikan gambar dua larutan berikut ini! Pernyataan terkait kedua larutan tersebut, antara lain: Soal nomor 12: Diketahui data beberapa indikator dan trayek pH. PERHATIAN untuk jawaban nomor 7 dan 10 pada pembahasan yang didownload terjadi kekeliruan, yang benar seperti pada tulisan di blog ini.
Sebelummempelajari persamaan garis singgung, baik dikuasai dulu PERSAMAAN LINGKARAN, sehingga untuk menuju materi persamaan garis singgung lingkaran tidak kesulitan ketika menentukan pusat-pusat lingkarannya. materi yang akan kita pelajari diantaranya persamaan garis singgung lingkaran melalui titik pada lingkaran, contoh soal persamaan garis singgung lingkaran yang sejajar dan persamaan
Soalnomor 3. Jika dua buah titik berjarak 4 meter bermuatan masing-masing +q1 dan +q2. Berapa perbandingan antara q1 dan q2, apabila medan listrik pada titik yang berjarak 1 meter dari q1 bernilai nol. Penyelesaian : Karena pada titik A medan listriknya sama dengan nol, maka E 1-E 2 = 0, E 1 = E 2. Persamaan yang diperoleh : E A = E A
2mCD.
untuk soal nomor 7-12 diketahui dua titik pada garis l1 dan garis l2. tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus,sejajar,atau tidak keduanya. dan 4,9 l2=-1,4 dan 3,21. untuk soal nomor 7-12 diketahui dua titik pada garis l1 dan garis l2. tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus,sejajar,atau tidak keduanya. dan 4,9 l2=-1,4 dan 3,22. untuk soal nomor 7-12 diketahui dua titik pada garis l1 dan garis menggambar grafik,tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya 5,9,l24,2dan 0,23. yang melalui titik A-2,3 Dan B2,P Memiliki Kemiringan 1/2 Tentukan Nilai P garis yang melalui titik 4,H Dan H+3,7 Kemiringan -1/4 Tentukan Nilai H Untuk soal nomor 7-12 diketahui dua titik pada garis I1 dan garis I2,tampa menggambar grafik,tentukan apakah kedua garis tegak luruss,sejajar Atau tidak Keduanya. Dan 4,9 I2-1,4 dan 3,2 dan 1,2 I20,4 dan 7,2 itu soal dari buku siswa K13 Halaman 131 Nomor 5=1 No6=2 No7=3 No8=4 Bantu Yah Para Master Mtk Soalnya Dikumpilinnya Besok 4. 3. Jelaskan bagaimana kalian menentukan kemiringan garis lurus yang melalui dua titik berikut. a 2, 3 dan 6, 8. b β4, 5 dan β1, 3 . 4. Gambarkan grafik dengan diketahui sebagai berikut. a 1, 1 dengan kemiringan 2/3. b 0, β5 dengan kemiringan 3. c β2, 2 dengan kemiringan 0. 5. Garis yang melalui titik Aβ2, 3 dan B2, p memiliki kemiringan 1/ nilai p. 6. Kemiringan garis yang melalui titik 4, h dan h + 3, 7 kemiringan β 1/4. Tentukan nilai h. Untuk soal nomor 5 β 10, diketahui dua titik pada garis l1 dan garis l2. Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya. 7. l1 2, 5 dan 4, 9 8. l1 β3, β5 dan -1,2 9. l1 4, β2 dan3, β1l2 β1, 4 dan 3, 2 l2 0, 4 dan 7, 2 l2 β5, β1 danβ10, β16 10. l1 0, 0 dan 2, 3 11. l1 5, 3 dan 5, 9 12. l1 3, 5 dan2, 5l2 β2, 5 dan0, β2l2 4, 2 dan 0, 2 l2 2, 4 dan0, 4 13. Garis yang melalui titik β5, 2p dan β1, p memiliki kemiringan yang sama dengan garis yang melalui titik 1, 2 dan 3, 1. Tentukan nilai p. 14. Gambarlah grafik yang melalui titik W6, 4, dan tegak lurus DE dengan D0, 2 dan E5, 0.5. 3. Jelaskan cara menentukan kemiringan garis lurus yang melalui dua titik 2, 3 dan 6, 8 b. β4, 5 dan β1, 34. Gambarkan grafik jika diketahui unsur-unsur 1, 1 dengan kemiringan 32b. 0, β5 dengan kemiringan 3c. β2, 2 dengan kemiringan 05. Garis yang melalui titik Aβ2, 3 dan B2, p memiliki kemiringan 21 . Tentukan nilai Kemiringan garis yang melalui titik 4, h dan h + 3, 7 adalah 41 β . Tentukan nilai soal nomor 7 β 12, diketahui dua titik pada garis l1 dan garis l2. Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak l1 2, 5 dan 4, 9 10. l1 0, 0 dan 2, 3l2 β1, 4 dan 3, 2 l2 β2, 5 dan 0, β28. l1 β3, β5 dan β1, 2 11. l1 5, 3 dan 5, 9l2 0, 4 dan 7, 2 l2 4, 2 dan 0, 29. l1 4, β2 dan 3, β1 12. l1 3, 5 dan 2, 5l2 β5, β1 dan β10, β16 l2 2, 4 dan 0, 46. 3. Jelaskan bagaimana kalian menentukan kemiringan garis lurus yang melalui dua titik berikut. a 2, 3 dan 6, 8. b β4, 5 dan β1, 3 . 4. Gambarkan grafik dengan diketahui sebagai berikut. a 1, 1 dengan kemiringan 2/3. b 0, β5 dengan kemiringan 3. c β2, 2 dengan kemiringan 0. 5. Garis yang melalui titik Aβ2, 3 dan B2, p memiliki kemiringan 1/ nilai p. 6. Kemiringan garis yang melalui titik 4, h dan h + 3, 7 kemiringan β 1/4. Tentukan nilai h. Untuk soal nomor 5 β 10, diketahui dua titik pada garis l1 dan garis l2. Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya. 7. l1 2, 5 dan 4, 9 8. l1 β3, β5 dan -1,2 9. l1 4, β2 dan3, β1l2 β1, 4 dan 3, 2 l2 0, 4 dan 7, 2 l2 β5, β1 danβ10, β16 10. l1 0, 0 dan 2, 3 11. l1 5, 3 dan 5, 9 12. l1 3, 5 dan2, 5l2 β2, 5 dan0, β2l2 4, 2 dan 0, 2 l2 2, 4 dan0, 4 13. Garis yang melalui titik β5, 2p dan β1, p memiliki kemiringan yang sama dengan garis yang melalui titik 1, 2 dan 3, 1. Tentukan nilai p. 14. Gambarlah grafik yang melalui titik W6, 4, dan tegak lurus DE dengan D0, 2 dan E5, 0.7. οΏΌPENILAIAN TENGAH SEMESTER I MATEMATIKA KELAS VI Selasa,22 SEPTEMBER 2020Saya mengerjakan soal dengan sungguh-sungguh dan jujurWajib bilangan yang terdiri dari bilangan bulat positif, bilangan bulat negatif dan nol 0 disebut ...4 PoinA. bilangan desimalB. bilangan cacahC. bilangan bulatD. bilangan menyelam sedalam 15 meter di bawah permukaan laut , dapat ditulis ...4 PoinA. 0 meterB. - 15 meterC. 1/15 meterD. -1/15 dari 28 adalah ...4 PoinA. 0B. 1/28C. - 1/28D. - , 3 , -1 , 0 , 2 . -3 , -2 Bilangan di atas jika diurutkan dari yang terkecil ke yang terbesar akan menjadi4 PoinA. 0 , 1 , -1 , 2 , -2 , 3 , -3B. 3 , -3 , 2 , -2 , 1 , -1 , 0C. -3 , -2 , -1 , 0 , 1 , 2 , 3D. 3 . 2 , 1 , 0 , -1 , -2 , , 3 , -1 , 0 , 2 . -3 , -2 Bilangan di atas jika diurutkan dari yang terbesar ke yang terkecil akan menjadi ...4 PoinA. 3 . 2 , 1 , 0 , -1 , -2 , -3B. . -3 , -2 , -1 , 0 , 1 , 2 , 3C. 0 , 1 , -1 , 2 , -2 , 3 , -3D. 3 , -3 , 2 , -2 , 1 , -1 , 09. -5 ... -3 Pernyataan yang benar untuk mengisi titik-titik di atas adalah4 PoinA. kurang lebihB. lebih dariC. kurang dariD. sama ... -4 Pernyataan yang benar untuk mengisi titik-titik di atas adalah ...4 PoinA. kurang lebihB. kurang dariC. lebiih dariD. sama ... 24 PoinA. kurang lebihB. kurang dariC. lebih dariD. sama + - 12 = ...4 PoinA 27B. - 27C. 3D. - - 15 = ...4 PoinA. 60B. -60C. 30D. + 21 = ...4 PoinA. - 55B. - 13C. 55D. 20 + - 30 = ...4 PoinA. 50B. 10C. -10D. 15 x 5 = ...4 PoinA. - 75B. 75C. 3D. 20 x - 7 =4 PoinA. 27B. -27C. -140D. 72 - 8 = ....4 PoinA. 80B. -80C. 9D. yang ada tepat di tengah-tengah lingkaran sebagai pusatnya disebut ...4 PoinA . jari-jariB. diameterC. titik pusatD. garis yang menghubungkan antara titik pusat dengan titik lengkung pada keliling lingkaran disebut ...4 PoinA. juringB. jari-jariC. diameterD. garis panjang lurus yang menghubungkan antara dua titik pada keliling lingkaran yang melewati titik pusat lingkaran disebut ...4 PoinA. diameterB. apotemaC. jari-jariD. jari-jari sebuah lingkaran adalah 14 cm maka diameter lingkaran tersebut adalah ...4 PoinA. 7 cmB. 16 cmC. 20 cmD. 28 diameter sebuah lingkaran 40 cm Maka jari-jari lingkaran tersebut adalah ...4 PoinA. 10 cmB. 20 cmC. 60 cmD. 80 lingkaran diketahui memiliki jari-jari 7 cm. Berapa cm keliling lingkaran tersebut ?4 PoinA. 34B. 44C. 144D. lingkaran memiliki diameter 40 cm Berapa cm persegi luas lingkaran tersebut4 PoinA. sebuah lingkaran memiliki jari-jari 14 cm. Berapa cm kelilingnya ?4 PoinA. 78B. 88C. 166D. 61627.. Sebuah roda memiliki diameter 42 cm. Berapa Cm2 luasnya ?4 PoinA. 132B. 135C. 1385D. roda yang berbentuk lingkaran dengan jari β jari 20 cm Berapa Cm2 luasnya ?4 PoinA. 1625D. 1. Rumus luas dan keliling lingkaran adalah..A. L = Ο Γ r dan K = 2 Γ Ο Γ rB. L = Ο Γ r Γ r dan K = 2 Γ ΟC. L = Ο Γ rΒ² dan K = 2 Γ Ο Γ rD. L = Ο Γ r dan K = Ο Γ d2. Sebuah jam dinding berbentuk lingkaran memiliki diameter 28 cm. keliling jam dinding tersebut adalah..A. 86 cmB. 88 cm C. 90 cmD. 92 cm3. Diketahui keliling lingkaran adalah 154 cm. jari-jari lingkaran tersebut adalah...A. 24B. 24,5 cm C. 25 cmD. 25,5 cm4. sebuah kertas berbentuk lingkaran dengan keliling 616 cm. diameternya adalah...A. 196 cmB. 198 cmC. 206 cmD. 212 cm5. Tina memiliki hulahop dengan keliling 220 cm. jari-jari hulahop tina adalah..A. 28 cmB. 30 cmC. 32 cmD. 35 cmperhatikan gambar di atas ini untuk menjawab soal nomor 6 sampai 10 !!6. garis OC pada gambar lingkaran di atas tersebut adalah..A. jari-jariB. diameterC. diameterD. juring7. panjang garis OB pas sama panjang dengan garis ....... karena keduanya jari-jari lingkaran...A. OCB. ODC. ACD. DC8. garis BC pada gambar lingkaran di atas merupakan ..... lingkaran...A. jari-jariB. diameterC. tali busurD. tembereng9. tali busur pada gambar diatas ditunjukkan dengan huruf....A. ACB. OAC. ODD. AD10. apotema pada gambar diatas ditunjukkan oleh garis....A. OAB. OBC. OCD. ODisilah titik-titik dibawah ini dengan benar11. garis lurus yang menghubungkan dua titik pada sebuah lingkaran yaitu....12. daerah di dalam lingkaran yang dibatasi oleh tali busur dan busur disebut....13. daerah di dalam lingkaran yang dibatasi oleh sebuah busur lingkaran dan dua buah jari-jari tersebut adalah.....14. sebuah garis tegak lurus yang menghubungkan antara titik pusat dengan titik busur dinamakan.....15. sebuah lingkaran mempunyai panjang jari-jari 7 cm. maka diameter lingkaran tersebut adalah....Ayo di Jawab sekarang soalnya sekarang mau di kumpulin!!!aku kasi poin ba banyakβ 1. untuk soal nomor 7-12 diketahui dua titik pada garis l1 dan garis l2. tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus,sejajar,atau tidak keduanya. dan 4,9 l2=-1,4 dan 3,2Gradien adalah kemiringan atau kecondongan suatu garis. Biasanya dilambangkan dengan m. Gardien juga merupakan perbandingan dari perubahan nilai y dengan perubahan nilai gradien yang melalui dua titik xβ, yβ dan xβ, yβm = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]Hubungan dua buah garis1 Sejajar jika mβ = mβ2 tegak lurus jika mβ . mβ = -1Khusus jika mβ = 0 maka tegak lurus dengan mβ = a/0 dengan a bilangan bulat positif atau negatif yaitu garis yang sejajar sumbu x dengan garis yang sejajar sumbu yPembahasan 7 lβ = 2, 5 dan 4, 9mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{9-5}{4-2} =\frac{4}{2} = 2[/tex]lβ = -1, 4 dan 3, 2mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{2-4}{3-1} =\frac{-2}{4} = \frac{-1}{2}[/tex]karena mβ . mβ = 2 . -Β½ = -1 maka garis lβ dan garis lβ saling tegak lurus8 lβ = -3, -5 dan -1, 2mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{2-5}{-1-3} =\frac{2+5}{-1+3} = \frac{7}{2}[/tex]lβ = 0, 4 dan 7, 2mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{2-4}{7-0} =\frac{-2}{7} = -\frac{2}{7}[/tex]karena mβ . mβ = [tex]\frac{7}{2} \.\-\frac{2}{7}[/tex] = -1 maka garis lβ dan garis lβ saling tegak lurus9 lβ = 4, -2 dan 3, -1mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{-1-2}{3-4} =\frac{1}{-1} = -1[/tex]lβ = -5, -1 dan -10, -16mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{-16-1}{-10-5} =\frac{-15}{-5} = 3[/tex]karena mβ . mβ = -1 . 3 = -3 β -1 maka garis lβ dan garis lβ tidak saling tegak lurus dan karena mβ β mβ maka garis lβ dan garis lβ juga tidak sejajar10 lβ = 0, 0 dan 2, 3mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{3-0}{2-0} =\frac{3}{2}[/tex]lβ = -2, 5 dan 0, -2mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{-2-5}{0-2} =\frac{-7}{2} = -\frac{7}{2}[/tex]karena mβ . mβ = [tex]\frac{3}{2} \.\-\frac{7}{2} =-\frac{21}{4}[/tex] β -1 maka garis lβ dan garis lβ tidak saling tegak lurus dan karena mβ β mβ maka garis lβ dan garis lβ juga tidak sejajar11 lβ = 5, 3 dan 5, 9mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{9-3}{5-5} =\frac{6}{0}[/tex]lβ = 4, 2 dan 0, 2mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{2-2}{0-4} =\frac{0}{-4} = 0[/tex]karena mβ = 6/0 sejajar sumbu y dan mβ = 0 sejajar sumbu x maka garis lβ dan garis lβ saling tegak lurus12 lβ = 3, 5 dan 2, 5mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{5-5}{2-3} =\frac{0}{-1} = 0[/tex]lβ = 2, 4 dan 0, 4mβ = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{4-4}{0-2} =\frac{0}{-2} = 0[/tex]karena mβ = mβ = 0 maka garis lβ sejajar garis lβJadi kesimpulannya adalah7 Kedua garis saling tegak lurus8 Kedua garis saling tegak lurus9 Kedua garis tidak saling tegak lurus dan tidak sejajar10 Kedua garis tidak saling tegak lurus dan tidak sejajar11 Kedua garis saling tegak lurus12 Kedua garis sejajarPelajari lebih lanjut Jawaban Kelas 8Mapel MatematikaKategori Persamaan garisKode Kunci gradien garis, tegak lurus, sejajar 2. untuk soal nomor 7-12 diketahui dua titik pada garis l1 dan garis menggambar grafik,tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya 5,9,l24,2dan 0,2 Kategori Matematika Materi Garis Kelas VIII SMP Lihat Jawaban No. 11Perhitungan Terlampir 3. yang melalui titik A-2,3 Dan B2,P Memiliki Kemiringan 1/2 Tentukan Nilai P garis yang melalui titik 4,H Dan H+3,7 Kemiringan -1/4 Tentukan Nilai H Untuk soal nomor 7-12 diketahui dua titik pada garis I1 dan garis I2,tampa menggambar grafik,tentukan apakah kedua garis tegak luruss,sejajar Atau tidak Keduanya. Dan 4,9 I2-1,4 dan 3,2 dan 1,2 I20,4 dan 7,2 itu soal dari buku siswa K13 Halaman 131 Nomor 5=1 No6=2 No7=3 No8=4 Bantu Yah Para Master Mtk Soalnya Dikumpilinnya Besok 1.[tex]\displaystyle m=\frac{y_2-y_1}{x_2-x_1} \\ \frac{1}{2}=\frac{P-3}{2-2} \\ \frac{1}{2}=\frac{P-3}{4} \\ 4=2P-3 \\ 2=P-3 \\ P=2+3 \\ P=5[/tex]2.[tex]\displaystyle m=\frac{y_2-y_1}{x_2-x_1} \\ -\frac{1}{4}=\frac{7-H}{H+3-4} \\ -\frac{1}{4}=\frac{7-H}{H-1} \\ -1H-1=47-H \\ 1-H=28-4H \\ 4H-H=28-1 \\ 3H=27 \\ H=9[/tex] masing2 gradiennyal1 m1 = 9-5/4-2 = 4/2 = 2l2 m2 = 2-4/3-1 = -2/4 = -1/2m1 x m2 = -1, maka tegak m1 = 2-5/1-3 = 7/4l2 m2 = 2-4/7-0 = -2/7Karena m1 tidak sama m2 dan m1 x m2 tidak sama -1Maka tidak sejajar dan tegak lurus 4. 3. Jelaskan bagaimana kalian menentukan kemiringan garis lurus yang melalui dua titik berikut. a 2, 3 dan 6, 8. b β4, 5 dan β1, 3 . 4. Gambarkan grafik dengan diketahui sebagai berikut. a 1, 1 dengan kemiringan 2/3. b 0, β5 dengan kemiringan 3. c β2, 2 dengan kemiringan 0. 5. Garis yang melalui titik Aβ2, 3 dan B2, p memiliki kemiringan 1/ nilai p. 6. Kemiringan garis yang melalui titik 4, h dan h + 3, 7 kemiringan β 1/4. Tentukan nilai h. Untuk soal nomor 5 β 10, diketahui dua titik pada garis l1 dan garis l2. Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya. 7. l1 2, 5 dan 4, 9 8. l1 β3, β5 dan -1,2 9. l1 4, β2 dan3, β1l2 β1, 4 dan 3, 2 l2 0, 4 dan 7, 2 l2 β5, β1 danβ10, β16 10. l1 0, 0 dan 2, 3 11. l1 5, 3 dan 5, 9 12. l1 3, 5 dan2, 5l2 β2, 5 dan0, β2l2 4, 2 dan 0, 2 l2 2, 4 dan0, 4 13. Garis yang melalui titik β5, 2p dan β1, p memiliki kemiringan yang sama dengan garis yang melalui titik 1, 2 dan 3, 1. Tentukan nilai p. 14. Gambarlah grafik yang melalui titik W6, 4, dan tegak lurus DE dengan D0, 2 dan E5, 0. ini penjelasan atau jawaban no 3 yang a dan b tentang. kemringan garis 5. 3. Jelaskan cara menentukan kemiringan garis lurus yang melalui dua titik 2, 3 dan 6, 8 b. β4, 5 dan β1, 34. Gambarkan grafik jika diketahui unsur-unsur 1, 1 dengan kemiringan 32b. 0, β5 dengan kemiringan 3c. β2, 2 dengan kemiringan 05. Garis yang melalui titik Aβ2, 3 dan B2, p memiliki kemiringan 21 . Tentukan nilai Kemiringan garis yang melalui titik 4, h dan h + 3, 7 adalah 41 β . Tentukan nilai soal nomor 7 β 12, diketahui dua titik pada garis l1 dan garis l2. Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak l1 2, 5 dan 4, 9 10. l1 0, 0 dan 2, 3l2 β1, 4 dan 3, 2 l2 β2, 5 dan 0, β28. l1 β3, β5 dan β1, 2 11. l1 5, 3 dan 5, 9l2 0, 4 dan 7, 2 l2 4, 2 dan 0, 29. l1 4, β2 dan 3, β1 12. l1 3, 5 dan 2, 5l2 β5, β1 dan β10, β16 l2 2, 4 dan 0, 4 3. a. m=8-3/6-2=5/ 6. 3. Jelaskan bagaimana kalian menentukan kemiringan garis lurus yang melalui dua titik berikut. a 2, 3 dan 6, 8. b β4, 5 dan β1, 3 . 4. Gambarkan grafik dengan diketahui sebagai berikut. a 1, 1 dengan kemiringan 2/3. b 0, β5 dengan kemiringan 3. c β2, 2 dengan kemiringan 0. 5. Garis yang melalui titik Aβ2, 3 dan B2, p memiliki kemiringan 1/ nilai p. 6. Kemiringan garis yang melalui titik 4, h dan h + 3, 7 kemiringan β 1/4. Tentukan nilai h. Untuk soal nomor 5 β 10, diketahui dua titik pada garis l1 dan garis l2. Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya. 7. l1 2, 5 dan 4, 9 8. l1 β3, β5 dan -1,2 9. l1 4, β2 dan3, β1l2 β1, 4 dan 3, 2 l2 0, 4 dan 7, 2 l2 β5, β1 danβ10, β16 10. l1 0, 0 dan 2, 3 11. l1 5, 3 dan 5, 9 12. l1 3, 5 dan2, 5l2 β2, 5 dan0, β2l2 4, 2 dan 0, 2 l2 2, 4 dan0, 4 13. Garis yang melalui titik β5, 2p dan β1, p memiliki kemiringan yang sama dengan garis yang melalui titik 1, 2 dan 3, 1. Tentukan nilai p. 14. Gambarlah grafik yang melalui titik W6, 4, dan tegak lurus DE dengan D0, 2 dan E5, 0. 5. m = yβ - yβ xβ - xβ 1 = p - 32 4 4 = 2p-3p = 2+3p = 5 7. οΏΌPENILAIAN TENGAH SEMESTER I MATEMATIKA KELAS VI Selasa,22 SEPTEMBER 2020Saya mengerjakan soal dengan sungguh-sungguh dan jujurWajib bilangan yang terdiri dari bilangan bulat positif, bilangan bulat negatif dan nol 0 disebut ...4 PoinA. bilangan desimalB. bilangan cacahC. bilangan bulatD. bilangan menyelam sedalam 15 meter di bawah permukaan laut , dapat ditulis ...4 PoinA. 0 meterB. - 15 meterC. 1/15 meterD. -1/15 dari 28 adalah ...4 PoinA. 0B. 1/28C. - 1/28D. - , 3 , -1 , 0 , 2 . -3 , -2 Bilangan di atas jika diurutkan dari yang terkecil ke yang terbesar akan menjadi4 PoinA. 0 , 1 , -1 , 2 , -2 , 3 , -3B. 3 , -3 , 2 , -2 , 1 , -1 , 0C. -3 , -2 , -1 , 0 , 1 , 2 , 3D. 3 . 2 , 1 , 0 , -1 , -2 , , 3 , -1 , 0 , 2 . -3 , -2 Bilangan di atas jika diurutkan dari yang terbesar ke yang terkecil akan menjadi ...4 PoinA. 3 . 2 , 1 , 0 , -1 , -2 , -3B. . -3 , -2 , -1 , 0 , 1 , 2 , 3C. 0 , 1 , -1 , 2 , -2 , 3 , -3D. 3 , -3 , 2 , -2 , 1 , -1 , 09. -5 ... -3 Pernyataan yang benar untuk mengisi titik-titik di atas adalah4 PoinA. kurang lebihB. lebih dariC. kurang dariD. sama ... -4 Pernyataan yang benar untuk mengisi titik-titik di atas adalah ...4 PoinA. kurang lebihB. kurang dariC. lebiih dariD. sama ... 24 PoinA. kurang lebihB. kurang dariC. lebih dariD. sama + - 12 = ...4 PoinA 27B. - 27C. 3D. - - 15 = ...4 PoinA. 60B. -60C. 30D. + 21 = ...4 PoinA. - 55B. - 13C. 55D. 20 + - 30 = ...4 PoinA. 50B. 10C. -10D. 15 x 5 = ...4 PoinA. - 75B. 75C. 3D. 20 x - 7 =4 PoinA. 27B. -27C. -140D. 72 - 8 = ....4 PoinA. 80B. -80C. 9D. yang ada tepat di tengah-tengah lingkaran sebagai pusatnya disebut ...4 PoinA . jari-jariB. diameterC. titik pusatD. garis yang menghubungkan antara titik pusat dengan titik lengkung pada keliling lingkaran disebut ...4 PoinA. juringB. jari-jariC. diameterD. garis panjang lurus yang menghubungkan antara dua titik pada keliling lingkaran yang melewati titik pusat lingkaran disebut ...4 PoinA. diameterB. apotemaC. jari-jariD. jari-jari sebuah lingkaran adalah 14 cm maka diameter lingkaran tersebut adalah ...4 PoinA. 7 cmB. 16 cmC. 20 cmD. 28 diameter sebuah lingkaran 40 cm Maka jari-jari lingkaran tersebut adalah ...4 PoinA. 10 cmB. 20 cmC. 60 cmD. 80 lingkaran diketahui memiliki jari-jari 7 cm. Berapa cm keliling lingkaran tersebut ?4 PoinA. 34B. 44C. 144D. lingkaran memiliki diameter 40 cm Berapa cm persegi luas lingkaran tersebut4 PoinA. sebuah lingkaran memiliki jari-jari 14 cm. Berapa cm kelilingnya ?4 PoinA. 78B. 88C. 166D. 61627.. Sebuah roda memiliki diameter 42 cm. Berapa Cm2 luasnya ?4 PoinA. 132B. 135C. 1385D. roda yang berbentuk lingkaran dengan jari β jari 20 cm Berapa Cm2 luasnya ?4 PoinA. 1625D. C. 16. A. 28. A5. B. 18. C. 21. A10. C. 22. D11. B. 23. B12. C. 24. B13. A. 25. C14. B. 26. B15. D. 27. DPenjelasan dengan langkah-langkahsudah sangat jelas. 8. 1. Rumus luas dan keliling lingkaran adalah..A. L = Ο Γ r dan K = 2 Γ Ο Γ rB. L = Ο Γ r Γ r dan K = 2 Γ ΟC. L = Ο Γ rΒ² dan K = 2 Γ Ο Γ rD. L = Ο Γ r dan K = Ο Γ d2. Sebuah jam dinding berbentuk lingkaran memiliki diameter 28 cm. keliling jam dinding tersebut adalah..A. 86 cmB. 88 cm C. 90 cmD. 92 cm3. Diketahui keliling lingkaran adalah 154 cm. jari-jari lingkaran tersebut adalah...A. 24B. 24,5 cm C. 25 cmD. 25,5 cm4. sebuah kertas berbentuk lingkaran dengan keliling 616 cm. diameternya adalah...A. 196 cmB. 198 cmC. 206 cmD. 212 cm5. Tina memiliki hulahop dengan keliling 220 cm. jari-jari hulahop tina adalah..A. 28 cmB. 30 cmC. 32 cmD. 35 cmperhatikan gambar di atas ini untuk menjawab soal nomor 6 sampai 10 !!6. garis OC pada gambar lingkaran di atas tersebut adalah..A. jari-jariB. diameterC. diameterD. juring7. panjang garis OB pas sama panjang dengan garis ....... karena keduanya jari-jari lingkaran...A. OCB. ODC. ACD. DC8. garis BC pada gambar lingkaran di atas merupakan ..... lingkaran...A. jari-jariB. diameterC. tali busurD. tembereng9. tali busur pada gambar diatas ditunjukkan dengan huruf....A. ACB. OAC. ODD. AD10. apotema pada gambar diatas ditunjukkan oleh garis....A. OAB. OBC. OCD. ODisilah titik-titik dibawah ini dengan benar11. garis lurus yang menghubungkan dua titik pada sebuah lingkaran yaitu....12. daerah di dalam lingkaran yang dibatasi oleh tali busur dan busur disebut....13. daerah di dalam lingkaran yang dibatasi oleh sebuah busur lingkaran dan dua buah jari-jari tersebut adalah.....14. sebuah garis tegak lurus yang menghubungkan antara titik pusat dengan titik busur dinamakan.....15. sebuah lingkaran mempunyai panjang jari-jari 7 cm. maka diameter lingkaran tersebut adalah....Ayo di Jawab sekarang soalnya sekarang mau di kumpulin!!!aku kasi poin ba banyakβJawaban1. C2. B3. B4. 5. D6. A7. A8. B9. A10. Dsorry tdi ku kira ga ada gambarCmiiw Please jadiin jawaban tercerdas, mau ngejar rank
BerandaDiketahui dua titik pada garis l 1 Γ’β¬βΉ dan garis l 2...PertanyaanDiketahui dua titik pada garis l 1 Γ’β¬βΉ dan garis l 2 Γ’β¬βΉ . Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya. Γ’β¬βΉ Γ’β¬βΉ l 1 Γ’β¬βΉ Γ’Λβ 3 , Γ’Λβ 5 dan Γ’β¬β1 , 2 l 2 Γ’β¬βΉ 0 , 4 dan 7 , 2 Γ’β¬βΉDiketahui dua titik pada garis dan garis . Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya. FFF. Freelancer9Master TeacherPembahasanPerhatikan bahwa gradien garis adalah dan gradien garis adalah Karena maka kedua garis itu berpotongan tegak bahwa gradien garis adalah dan gradien garis adalah Karena maka kedua garis itu berpotongan tegak lurus. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!ΓΒ©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia